machine-hour method - translation to ρωσικά
DICLIB.COM
AI-based language tools
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από τεχνητή νοημοσύνη

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

machine-hour method - translation to ρωσικά

Schrodinger method; Schroedinger method; Schrodinger's method; Schroedinger's method; Schrödinger's method

machine-hour method      

бухгалтерский учет

метод распределения по машино-часам (метод распределения накладных расходов пропорционально затраченным машино-часам)

machine-hour method      
метод распределения (накладных расходов) пропорционально затраченным машино-часам
witching hour         
  • 13th-century CE portrayal of an [[unclean spirit]]
  • Füssli]]'s ''The Nightmare'' (1781)
TIME OF DAY WHEN THE DEVIL, DEMONS OR GHOSTS ARE SUPPOSED TO COME OUT
Witching hour (investing); Witching hour (Investing); Witching hour (supernatural)
[поэт.] полночь, колдовской час

Ορισμός

ПУЛЕМЕТ
автоматическое оружие для поражения наземных, воздушных и морских целей. Изобретен в 80-х гг. 19 в. Различают пулеметы ручные (с сошкой), станковые (на треноге или колесах), единые, используемые в обоих вариантах, и крупнокалиберные; по назначению - пехотные, зенитные, авиационные, танковые и др. По калибру пулеметы делятся на пулеметы малого (до 6,5 мм), нормального (от 6,5 до 9 мм) и крупного (от 9 до 14,5 мм) калибра.

Βικιπαίδεια

Schrödinger method

In combinatorial mathematics and probability theory, the Schrödinger method, named after the Austrian physicist Erwin Schrödinger, is used to solve some problems of distribution and occupancy.

Suppose

X 1 , , X n {\displaystyle X_{1},\dots ,X_{n}\,}

are independent random variables that are uniformly distributed on the interval [0, 1]. Let

X ( 1 ) , , X ( n ) {\displaystyle X_{(1)},\dots ,X_{(n)}\,}

be the corresponding order statistics, i.e., the result of sorting these n random variables into increasing order. We seek the probability of some event A defined in terms of these order statistics. For example, we might seek the probability that in a certain seven-day period there were at most two days in on which only one phone call was received, given that the number of phone calls during that time was 20. This assumes uniform distribution of arrival times.

The Schrödinger method begins by assigning a Poisson distribution with expected value λt to the number of observations in the interval [0, t], the number of observations in non-overlapping subintervals being independent (see Poisson process). The number N of observations is Poisson-distributed with expected value λ. Then we rely on the fact that the conditional probability

P ( A N = n ) {\displaystyle P(A\mid N=n)\,}

does not depend on λ (in the language of statisticians, N is a sufficient statistic for this parametrized family of probability distributions for the order statistics). We proceed as follows:

P λ ( A ) = n = 0 P ( A N = n ) P ( N = n ) = n = 0 P ( A N = n ) λ n e λ n ! , {\displaystyle P_{\lambda }(A)=\sum _{n=0}^{\infty }P(A\mid N=n)P(N=n)=\sum _{n=0}^{\infty }P(A\mid N=n){\lambda ^{n}e^{-\lambda } \over n!},}

so that

e λ P λ ( A ) = n = 0 P ( A N = n ) λ n n ! . {\displaystyle e^{\lambda }\,P_{\lambda }(A)=\sum _{n=0}^{\infty }P(A\mid N=n){\lambda ^{n} \over n!}.}

Now the lack of dependence of P(A | N = n) upon λ entails that the last sum displayed above is a power series in λ and P(A | N = n) is the value of its nth derivative at λ = 0, i.e.,

P ( A N = n ) = [ d n d λ n ( e λ P λ ( A ) ) ] λ = 0 . {\displaystyle P(A\mid N=n)=\left[{d^{n} \over d\lambda ^{n}}\left(e^{\lambda }\,P_{\lambda }(A)\right)\right]_{\lambda =0}.}

For this method to be of any use in finding P(A | N =n), must be possible to find Pλ(A) more directly than P(A | N = n). What makes that possible is the independence of the numbers of arrivals in non-overlapping subintervals.

Μετάφραση του &#39machine-hour method&#39 σε Ρωσικά